Typical ranks in symmetric matrix completion
نویسندگان
چکیده
We study the problem of low-rank matrix completion for symmetric matrices. The minimum rank a generic partially specified depends only on location entries, and not their values, if complex entries are allowed. When required to be real, this is no longer case possible ranks called typical ranks. give combinatorial description patterns n×n matrices that have n as rank. Moreover, we describe exactly when such partial minimally completable n. also characterize with low maximal
منابع مشابه
Deterministic Symmetric Positive Semidefinite Matrix Completion
We consider the problem of recovering a symmetric, positive semidefinite (SPSD) matrix from a subset of its entries, possibly corrupted by noise. In contrast to previous matrix recovery work, we drop the assumption of a random sampling of entries in favor of a deterministic sampling of principal submatrices of the matrix. We develop a set of sufficient conditions for the recovery of a SPSD matr...
متن کاملGraph Matrix Completion in Presence of Outliers
Matrix completion problem has gathered a lot of attention in recent years. In the matrix completion problem, the goal is to recover a low-rank matrix from a subset of its entries. The graph matrix completion was introduced based on the fact that the relation between rows (or columns) of a matrix can be modeled as a graph structure. The graph matrix completion problem is formulated by adding the...
متن کاملOn Maximum, Typical, and Generic Ranks
We show that for several notions of rank including tensor rank, Waring rank, and generalized rank with respect to a projective variety, the maximum value of rank is at most twice the generic rank. We show that over the real numbers, the maximum value of the real rank is at most twice the smallest typical rank, which is equal to the (complex) generic rank.
متن کاملThe partial non - combinatorially symmetric N 10 - matrix completion problem
An n×n matrix is called an N 0 -matrix if all principal minors are non-positive and each entry is non-positive. In this paper, we study the partial non-combinatorially symmetric N 0 -matrix completion problems if the graph of its specified entries is a transitive tournament or a double cycle. In general, these digraphs do not have N 0 -completion. Therefore, we have given sufficient conditions ...
متن کاملAppendix for Deterministic Symmetric Positive Semidefinite Matrix Completion
First, note that by assumption rank{A} > 0. Let Ω1 = ρ1 × ρ1 and Ω2 = ρ2 × ρ2 be the two index sets in the theorem. By assumption we have ρ1 × ρ1 ∪ ρ2 × ρ2 = Ω and Ω 6= [n]× [n]. If A1 is not met, then ρ1 ∪ ρ2 6= [n], and from lemma 6 we can conclude recovery of A is impossible. If ρ1 ∪ ρ2 = [n], but A2 is not met then ι2 = |ρ1 ∩ ρ2| < r so it must be that rank{A(ι2, ι2)} < r. Further, by assum...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Pure and Applied Algebra
سال: 2021
ISSN: ['1873-1376', '0022-4049']
DOI: https://doi.org/10.1016/j.jpaa.2020.106603